A New Stereo Pair Disparity Index (SPDI) for Detecting Built-Up Areas from High-Resolution Stereo Imagery
نویسندگان
چکیده
Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slopes and building heights extracted from auxiliary data, such as Digital Surface Models (DSMs) however, can improve the results. Stereo imagery incorporates height information unlike single remotely sensed images. In this study, a new Stereo Pair Disparity Index (SPDI) for indicating built-up areas is calculated from stereo-extracted disparity information. Further, a new method of detecting built-up areas from stereo pairs is proposed based on the SPDI, using disparity information to establish the relationship between two images of a stereo pair. As shown in the experimental results for two stereo pairs covering different scenes with diverse urban settings, the SPDI effectively differentiates between built-up and non-built-up areas. Our proposed method achieves higher accuracy built-up area results from stereo images than the traditional method for single images, and two other widely-applied DSM-based methods for stereo images. Our approach is suitable for spaceborne and airborne stereo pairs and triplets. Our research introduces a new effective height feature (SPDI) for detecting built-up areas from stereo imagery with no need for DSMs.
منابع مشابه
Optimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملEnhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction
This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their abil...
متن کاملReliable Multiscale and Multiwindow Stereo Matching
We consider the two-images stereo disparity problem favoring correctness of matches over density. We will deal with high resolution images which permit an accurate matching in textured zones, but which might present, as any stereo pair, ambiguities and occlusions. Global variational methods can estimate a dense map based on regularity assumptions about the disparity function. However, if these ...
متن کاملEnhancement of Dense Urban Digital Surface Models from Vhr Optical Satellite Stereo Data by Pre-segmentation and Object Detection
The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing...
متن کاملSatellite Stereo Based Digital Surface Model Generation Using Semi Global Matching in Object and Image Space
This paper presents methodology and evaluation of Digital Surface Models (DSM) generated from satellite stereo imagery using Semi Global Matching (SGM) applied in image space and georeferenced voxel space. SGM is a well known algorithm, used widely for DSM generation from airborne and satellite imagery. SGM is typically applied in the image space to compute disparity map corresponding to a ster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017